Stereolithography

What is Stereolithography

 

Stereolithography is a 3D Printing process which uses a computer-controlled moving laser beam, pre-programmed using CAM/CAD software. 

Stereolithography (SL) is an industrial 3D printing process used to create concept models, cosmetic - rapid prototypes, and complex parts with intricate geometries in as fast as 1 day. Stereolithography parts can be produced in a wide selection of materials, extremely high feature resolutions, and quality surface finishes are possible with SL. We also offer a number of secondary services such as painting, post machining and measurement and inspection, to further enhance the finish of your 3D-printed project design. 

Stereolithography design guidelines will help you understand capabilities and limitations.

 

How Does Stereolithography Work? 

The SL machine begins the 3D printing process by drawing the layers of the support structures, followed by the part itself, with an ultraviolet laser aimed onto the surface of a liquid thermoset resin. After a layer is imaged on the resin surface, the build platform shifts down and a recoating bar moves across the platform to apply the next layer of resin. The process is repeated layer by layer until the build is complete.

Newly built parts are taken out of machine and into a lab where solvents are used to remove any additional resins. When the parts are completely clean, the support structures are manually removed. From there, parts undergo a UV-curing cycle to fully solidify the outer surface of the part. The final step in the SL process is the application of any custom or customer-specified finishing. Parts built in SL should be used with minimal UV and humidity exposure so they don’t degrade.

Why Choose Stereolithography for your 3D Printing Project?

SL is an excellent choice for rapid prototyping and project designs that require the production of very accurate and finely detailed parts. It’s ideal for producing show-and-tell parts to enable validation of concept ideas and ergonomic testing. 

Stereolithography material data sheets can be found in our Material Comparison Guide


3DP icon logo
  • 1 to 50+ parts
  • Shipped in 1 to 7 working days
Common Applications
  • cosmetic prototypes
  • form and fit testing
  • high accuracy and surface quality
 

 

Watch: Multi Jet Fusion: What is This Used For?

For fast, quality results, Multi Jet Fusion (MJF) is unparalleled as a 3D printing process. It’s able to produce functional nylon prototypes and end-use production parts in a single day, featuring quality surface finishes and fine feature resolution. It also offers more consistent mechanical properties than similar processes like selective laser sintering.

Using an inkjet array to repeatedly apply fusing agents across a bed of nylon powder, followed by fusion into a solid layer via heating elements, MJF is able to offer complex and detailed features. Protolabs offers a commercial-grade unfilled Nylon 12 material to create durable parts. Multi Jet Fusion offers a fast and advanced way to create parts on demand. Discover more with this short video.


 

 

Watch: Differences in Major Material Types

Creating parts using 3D printing is easier than ever before, and prototyping and making design changes is fast, affordable and intuitive. The process offers a range of material types, from resin to plastic parts that are coated in metal, combining strength with lightness and flexibility.

Our ability to use Direct Metal Laser Sintering allows us to offer high-strength and temperature-resistant metallic parts quickly and cheaply, with the precision and quality you’ve come to expect from Protolabs.

Discover more about the materials we offer with this short video.


Design Guidelines: Stereolithography   



SLA Material Options

Below are your SLA material options at Protolabs. We offer a wide range of thermoplastic-like materials as well as post-processing options to enhance cosmetics and material attribute. Note that each property listed is measured along the X-Y plane.

ABS-Like White (Accura Xtreme White 200)

ABS-Like White (Accura Xtreme White 200) is a widely used general purpose SLA material. In terms of flexibility and strength, this material falls between moulded polypropylene and moulded ABS, which makes it a good choice for functional prototypes. Parts as large as 736mm x 635mm x 533mm can be built with ABS-Like White so consider it a primary option if you require an extensive part size build envelope.

Primary Benefits

  • Durable, general purpose resin
  • Accommodates extra-large parts
ABS-Like Grey (Accura Xtreme Grey)

ABS-Like Grey (Accura Xtreme Grey) is a widely used general purpose SLA material. In terms of flexibility and strength, this material falls between moulded polypropylene and moulded ABS, which makes it a good choice for functional prototypes. ABS-Like Grey offers the highest HDT of the ABS-like SLA resins.

Primary Benefits

  • Durable, general purpose resin
  • Highest HDT of the ABS-like SLA resins
ABS-Like Black (Accura Black 7820)

ABS-Like Black (Accura Black 7820) is a widely used general purpose material. Its deep black colour and glossy up-facing surfaces in a top profile offer the appearance of a moulded part, while layer lines may be visible in a side profile. Accura Black 7820 also has low moisture absorption (0.25% per DIN EN ISO 62) so that parts are more dimensionally stable. Compared to other SLA materials, it has midrange values for all mechanical properties.

Primary Benefits

  • Low moisture absorption
  • Glossy cosmetic appearance
ABS-Like Translucent/Clear (WaterShed XC 11122)

ABS-Like Translucent/Clear (WaterShed XC 11122) offers a unique combination of low moisture absorption (0.35% per DIN EN ISO 62) and near-colourless transparency. Secondary operations are required to achieve functional part clarity, and the part will also retain a very light blue hue afterward. While good for general-purpose applications, WaterShed is the best choice for flow-visualisation models, light pipes, and lenses.

Primary Benefits

  • Lowest moisture absorption of SLA resins
  • Functional transparency
MicroFine™ (Grey and Green)

MicroFine™ is a custom formulated material available in grey and green that is exclusive to Protolabs. This ABS-like thermoset is printed in Protolabs’ customised machinery to achieve high resolution features as small as 0.05mm MicroFine is ideal for small parts, generally less than 25.4mm by 25.4mm by 25.4mm In terms of mechanical properties, MicroFine falls in the mid-range of SLA materials for tensile strength and modulus and on the low end for impact strength and elongation.

Primary Benefits

  • Produces highest resolution parts
  • Ideal for extra-small parts
PC-Like Advanced High Temp (Accura 5530)

PC-Like Advanced High Temp (Accura 5530) creates strong, stiff parts with high temperature resistance. A thermal post-cure option can increase HDT as high as 250°c at 0.46 MPa loading. Accura 5530 has the highest E-modulus of all the unfilled SLA materials, and it is known for being resistant to automotive fluids. However, the thermal curing process does make Accura 5530 less durable, resulting in a 50% reduction to elongation.

Primary Benefits

  • High elastic modulus
  • Higher resistance to heated fluids
Ceramic-Like Advanced High-Temp (PerFORM)

Ceramic-Like Advanced HighTemp (PerFORM) exhibits the highest tensile strength and E-modulus making it the stiffest performance material of the SLA materials. When the thermal cure option is applied to parts made from PerFORM, it exhibits the highest HDT (as high as 268°C at 0.46 MPa loading) of the SLA materials.

Primary Benefits

  • Stiffest SLA resin
  • Highest HDT of SLA resins
True Silicone

True Silicone is 100% pure silicone. The material shows high resistance to harsh environmental conditions, various acids, bases and nonpolar solvents. True Silicone is typically used in healthcare applications like prosthetics, ear plugs or wearables, as well in broader industries, e.g. automotive or mechanical engineering, for products like sealings, hoses and gaskets

Primary Benefits

  • High temperature and wear resistance 
  • Elasticity and high reproducibility after
    deformation or stress

Compare Material Properties

Material  Colour  UTS Elastic Modulus Elongation
ABS-Like White
(Accura Xtreme White 200)
White 54.47 Mpa 3300 Mpa 9%
ABS-Like Gray
(Accura Xtreme Gray)
Gray 39.98 Mpa 2000 Mpa 9%
ABS-Like Black
(Accura 7820)
Black 48.26 Mpa 3000 Mpa 5%
ABS-Like Translucent/Clear (WaterShed XC 11122) Translucent/Clear 54.47 Mpa 2600 Mpa 6%
MicroFine™
(Grey and Green)
Grey or Green 59.98 Mpa 377 ksi 8%
PC-Like Advanced High Temp* (Accura 5530)  Translucent/Amber 44.81 Mpa 3902 Mpa 1.5%
Ceramic-Like Advanced HighTemp*
(PerFORM)
White 75.15 Mpa 10,500 Mpa 1%

*Properties listed are based on thermal cure

These figures are approximate and dependent on a number of factors, including but not limited to, machine and process parameters. The information provided is therefore not binding and not deemed to be certified. When performance is critical, also consider independent lab testing of additive materials or final parts.



Additional Finishing Options

Custom finishing is a mix of science, technology, and fine art that can transform a part to your exact specifications. Finishes include:

  • Soft-touch paint
  • Clear part finishing
  • Paint finishes
  • Masking
  • Color matching

 

Micro resolution 3D Printing

Now for the first time if you need micro resolution parts with details as fine as 0.07mm you can prototype your designs using Stereolithography 3D printing. With our new proprietary MicroFine™ Grey and MicroFine™ Green materials and our optimised and unique equipment this is now readily available, often in just a day

MicroFine™ Grey and MicroFine™ Green

Benefits of Stereolithography

 

  • Competitively priced
  • Excellent surface finish
  • Easily duplicates complex geometries
  • One of the best surface finishes for an additive process

 


What is Stereolithography Used for?

Stereolithography is good for producing accurate prototypes and models.

Stereolithography is well used for creating accurate 3D models of anatomical regions of a patient, used to aid in diagnosis and for pre-planning and implant design and manufacture. It is also good for use in concept models and scale models.

Stereolithography is used for prototyping in order to assess design and for part validation. This is due to accuracy and its ability to produce irregular shapes.

To see an example of a part worked on by Protolabs that used our Stereolithography service, please click here.


What are the material options for Stereolithography?

Unlike older generations of SL, today’s machines offer a range of thermoplastic-like materials to choose from, with several variants to mimic polypropylene, ABS, and glass-filled polycarbonate available. Protolabs offers many variations of these materials:

View the Stereolithography Materials selector

  • Polypropylene: A flexible, durable resin that mimics a stiff polypropylene. It can withstand harsh mechanical treatment and is great for fine details—sharp corners, thin walls, small holes, etc.
  • Polypropylene/ABS blend: Strong, white plastic similar to a CNC machined polypropylene/ABS blend. It works well for snap fits, assemblies, and demanding applications.
  • ABS: Variations of ABS mimics include a clear, low-viscosity resin that can be finished clear; an opaque black plastic that blocks nearly all visible light, even in thin sections; a clear, colourless, water-resistant plastic good for lenses and flow-visualisation models; and a micro-resolution resin that enables production of parts with extremely fine features and tight tolerances.
  • Polycarbonate: A ceramic-filled PC material that provides strength, stiffness, and temperature resistance, but can be brittle.

 

For a more detailed look at 3D printing and Stereolithography, read our white paper on choosing the right 3D printing materials.

Please refer to our materials comparison guide for further detail to support your material selection. Additionally, applications engineers at Protolabs can help guide you during material and manufacturing process selection if help is needed.

For technical support, call Protolabs on +44 (0)1952 683047 or email: [email protected] to discuss the options available for your design.


Resources

a metal 3D printing technician removes support structures from a DMLS part

Instant quote with free design analysis

GET A QUOTE